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Development of efficient processes for preparation of azo Table 1. Hydrogen Peroxide Based Oxidation of Various

At ; ; Hydrazines Using TiCls/HBr Catalyst and, For Comparison,
derivatives is very important as these compounds are commonly NyH4V03 Catalys? (Isol gte d Yields %f the Corresponcrijing AZO

used as organic dyésndicators? radical reaction initiatord,and Products Are Presented)

therapeutic agentsln addition, azo compounds have potential for Entry Subsirate TiCl,/HBr NH,VO,

use in electronftand drug delivery applicatiorfs. Yields(%)*  Yields (%)
Presently known synthetic strategies to obtain these materials

include a very broad range of stoichiometric processes such as HN‘@ 95 9

electrophilic reactions of diazonium saléscoupling of primary QNH

arylamines with aromatic nitrogdand nitrd® compounds, Wallach
rearrangements of azoxy derivativésrearrangements of aryl ON
triazeneg¢ and reduction of azoxy and nitro aromatiés.
Additional important methods for obtaining azo derivatives H,N‘@’Noz 88 47
involve hydrazine oxidation. Most of these methods are based on QNH
stoichiometric processes and require use of PRETH)4,82 HgO 8b:¢

[\S]

(NH4)2S,0s,84 N-bromosuccinimide in pyridiné tetrabutylam- /
monium cerium(lV) nitraté? and arylsulfonyl peroxide reagerits, 3 QEE‘@’O 95 )
NaNQ, in acetic anhydridé, and NaNQ/NaHSQ, on silica
supportti
There are only a few known examples of catalytic oxidation of H j\
hydrazo compounds to the corresponding azo derivatives. Utilizing 4 \[fN\N 90 24
oxygen or HO, as oxidants, N0z, CuCh,%® and Co(ll) o H
complexe&dwere reported to catalyze this transformation. Also,
FeSQ was shown to function as hydrazo oxidation catalyst when </\/ i H
a mixture of KCIQ/H,SO, was used as an oxidafft. 5 N ”’ jg/ 88 16
Here we report the discovery of a novel catalytic system, with HO

a conceptually new mechanism of action, capable of highly efficient

and selective oxidation of hydrazo compounds into the correspond- H O H

ing azo derivatives. This new process is compatible with a range ¢ N\NJLN«N 85 38
of substituents, including aryl, methoxyaryl, nitroaryl, and acetyl, ©/ H H O

on the hydrazo functional group.

In the present study, a series of hydrazo compounds (entris 1 a Experimental conditions: TiGkolution (15% in HCI aqueous solution,
Table 1) were treated with 4@, and a catalyst mixture comprising  0.2—0.25 mol %); HBr solution (33% in acetic acid solution, 205 mol
TiCl; and HBr (Figure 1). The reported reactions proceed under %); H20 solution (30% in water;-1.5 mol %).> Experimental conditions:

bient diti ith fast kineti d tibl ith NH4VO3 solution (1.0% in 1.0 M HCI solution, 0.4 mol %);.8, solution
ambient conditions with fast kinetics and are compatible with a (3094 in water,~1.5 mol %).
series of solvents, including alcohols and DMSO. For all evaluated

hydrazo starting materials, high yields of the F:orrespo_nding azo R1_“_H_R2 H20, solvent RI—N=N—R?2
products were observed within a short period of time after TiClyHBr, RT

Compl.et.lon of the_bDZ addition. Furthermore, versatility and Figure 1. General procedure for the catalytic oxidation of hydrazo
selectivity of the TiCYHBr system was compared to the known  compounds to the corresponding azo derivatives. Catalyst: s/FiBt.
NH4VO; catalyst, used for bD.,-based oxidation of hydrazo

compounds. Therefore, in a comparative investigation, previously H,0, under acidic conditions, generating hydroxyl radicals, water,
investigated substrates (entriesd, Table 1) were treated with  and the Tt specieg?

H,0,, using NHVO3 as a catalyst Under investigated reaction conditions, we propose that the
Attempts to perform the reaction using a catalyst composed of formed hydroxyl radicals oxidize HBr into the corresponding
TiCls and HCI (instead of HBr) were not successful, and no hypobromous acid. Subsequently, formed HOBr is reduced back
oxidation products were observed. to the HBr and water by the hydrazo substrate, concurrently
The TiCk/HBr system is likely to function via two separate and producing the desired azo derivative and thus closing the-HBr

distinctive catalytic cycles, which are linked by radical species HOBr catalytic cycle (Figure 2).

(Figure 2). The first cycle involves a single-electron redox Although formation of the hydroxyl radical is well-documented,
transformation between i and T+ complexes. This reaction is  the formation of the hydrogen radical species could not be easily
initiated by the well-described process in which Bi@acts with proven, due to very high reactivity and short lifetime. Yet, strong

13784 m J. AM. CHEM. SOC. 2007, 129, 13784—13785 10.1021/ja074413c CCC: $37.00 © 2007 American Chemical Society
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HO H® compounds. Further investigations to expand the scope of this
reaction are currently under active investigation in our laboratories.
R'-N=N-R? HBr OH’ H20,
X Tid T Acknowledgment. The authors thank Bogdan Belgorodsky, Dr.
R1 N N R2 HOBr PN 4’ H® Shlomit Gali, Dr. Dan Grinstein, and Sharon Gil-Chaimov for their

contributions, and Tel-Aviv University for its generous financial

R', R’ = aryl, acetyl and benzoyl

Figure 2. Proposed mechanism for the catalytic oxidation of the hydrazo
compounds using #D, and TiCk/HBr catalyst.

support.
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Figure 3. Proposed mechanism of olefin hydrobromination process, based
on HBr, H0O,, and TiC} catalyst.

support for the suggested mechanism was provided by the work of
Nenadovic and co-workers who have shown that, in ethanét, Ti
could be effectively reduced by hydrogen radicals f& Eomplexes
with a rate of 5.95x 107 dm?® mol~t s~ 111

The mechanistic studies of the discovered process were begun
with the evaluation of the HBrHOBFr cycle, starting with validation
of the hypobromous acid formation. On the basis of the olefin
hydrobromination reaction reported by Saint and othevee used
transmethylstyrene as a HOBr-trapping substrate (Figure 3). The
reaction was performed with catalytic and stoichiometric amounts
(as compared tdransmethylstyrene starting material) of HBr
reagent. In each case, a corresponding amount of hydrobromination
product was observed, clearly indicating the formation of HOBr
species in our process.

We have performed stoichiometric oxidations of hydrazo starting
materials (entries 43, Table 1) by using an in situ generated
hypobromous acid fronN-bromoacetamide and HO&®2 These
oxidation reactions produced the same yields of the azo products
as our catalytic process, providing a strong support to our claim
that HOBr is indeed the oxidant of the hydrazo compound in the

reaction. It should be mentioned that no azo products were detected

when we attempted to react stoichiometric amounts of hydrazo
derivatives with HOCI or directly with bD,.

Additional studies included evaluation of other metal-containing
compounds as potential cocatalysts in our system. Specifically, VO-
(acac)'® and Cul'* both capable of single-electron redox trans-
formation, were used instead of TiClhowever, no hydrazo
oxidation was observed with these compounds.

In summary, a novel method for preparing azo compounds via
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